Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

Пермский национальный исследовательский политехнический университет

УТВЕРЖДАЮ

Проректор по образовательной деятельности

А.Б. Петроченков « <u>03</u> » <u>апреля</u> 20 <u>23</u> г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Дисциплина:	Теплопередача
	(наименование)
Форма обучения:	очная
	(очная/очно-заочная/заочная)
Уровень высшего образова	ния: специалитет
	(бакалавриат/специалитет/магистратура)
Общая трудоёмкость:	216 (6)
	(часы (ЗЕ))
Направление подготовки:	24.05.02 Проектирование авиационных и ракетных
	двигателей
	(код и наименование направления)
Направленность: Про	ектирование ракетных двигателей твердого топлива (CYOC)
	(наименование образовательной программы)

1. Общие положения

1.1. Цели и задачи дисциплины

Приобретение комплекса знаний о теоретических основах преобразования энергии, законах термодинамики, формирование умений и навыков термодинамического исследования рабочих процессов в авиационных двигателях и энергетических установках, ракетных двигателях твердого топлива.

1.2. Изучаемые объекты дисциплины

Основные физические положения, законы термодинамики, описывающие рабочий процесс в авиационных двигателях и энергетических установках, ракетных двигателях твердого топлива, основные термодинамические свойства и параметры состояния идеальных газов, термодинамические процессы и циклы, принцип действия и устройства тепловых двигателей и других теплотехнических устройств.

1.3. Входные требования

Не предусмотрены

2. Планируемые результаты обучения по дисциплине

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
ОПК-1	ИД-1ОПК-1	Знает теорию, основные законы и методы построения физических и математических моделей для исследования тепловых процессов; основные теплофизические свойства материалов; принцип действия и устройства теплообменных аппаратов.	Знает теорию, основные законы и методы в области естественнонаучных и общеинженерных дисциплин.	Зачет
ОПК-1	ид-20ПК-1	Умеет применять естественнонаучные и общеинженерные знания, аналитические методы и методы математического анализа и моделирования для решения различных теплотехнических задач в профессиональной деятельности, а также при проектировании агрегатов двигателей.	Умеет применять методы математического анализа и моделирования для решения инженерных задач профессиональной деятельности.	Индивидуальн ое задание

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
ОПК-1	ИД-3ОПК-1	Владеет навыками расчета и анализа тепловых процессов, теплообменных аппаратов и других теплотехнических устройств, применяющихся в авиационных двигателях и энергетических установках, ракетных двигателях твердого топлива; навыками проведения теплотехнических измерений, обработки и анализа результатов.	теоретического и	Индивидуальн ое задание
ОПК-5	ид-10ПК-5	Знает способы решения задач, относящихся к профессиональной деятельности, анализу теплового состояния разрабатываемых, исследуемых и проектируемых объектов и элементов, применяя методы моделирования, математического анализа, естественнонаучные и общеинженерные знания.	Знает методы разработки физических и математических моделей исследуемых процессов, явлений и объектов профессиональной деятельности.	Экзамен
ОПК-5	ИД-2ОПК-5	Умеет рассчитывать и анализировать стационарные и нестационарные тепловые процессы, теплообменные аппараты, применяющиеся в авиационных двигателях и энергетических установках, ракетных двигателях твердого топлива; проводить теплотехнические измерения, обрабатывать результаты измерений с применением компьютерной техники	Умеет разрабатывать и использовать физические и математические модели исследуемых процессов, явлений и объектов для решения инженерных задач.	Защита лабораторной работы
ОПК-5	ИД-3ОПК-5	Владеет навыками решения задач, относящихся к профессиональной	Владеет навыками решения профессиональных задач в области авиационной и	Защита лабораторной работы

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
		аналитические методы,	ракетно-космической технике современными методами.	
		общеинженерные знания.		

3. Объем и виды учебной работы

Вид учебной работы	Всего	Распределение по семестрам в часах		
вид учесной рассты	часов	Номер о	семестра	
		5	6	
1. Проведение учебных занятий (включая проведе-	81	45	36	
ние текущего контроля успеваемости) в форме:				
1.1. Контактная аудиторная работа, из них:				
- лекции (Л)	36	18	18	
- лабораторные работы (ЛР)	41	25	16	
- практические занятия, семинары и (или) другие виды занятий семинарского типа (ПЗ)				
- контроль самостоятельной работы (КСР)	4	2	2	
- контрольная работа				
1.2. Самостоятельная работа студентов (СРС)	99	63	36	
2. Промежуточная аттестация				
Экзамен	36		36	
Дифференцированный зачет				
Зачет	9	9		
Курсовой проект (КП)				
Курсовая работа (КР)				
Общая трудоемкость дисциплины	216	108	108	

4. Содержание дисциплины

Наименование разделов дисциплины с кратким содержанием			Объем внеаудиторных занятий по видам в часах	
	Л	ЛР	П3	CPC
5-й семестр				

Наименование разделов дисциплины с кратким содержанием	Объем аудиторных занятий по видам в часах		Объем внеаудиторных занятий по видам в часах	
	Л	ЛР	П3	CPC
Основные понятия и определения.	2	0	0	6
Теория теплопередачи как специальная теплотехническая дисциплина, этапы исторического развития. Значение дисциплины для последующего изучения специальных курсов и для практической деятельности. Способы распространения теплоты: теплопроводность, конвекция, излучение, их сравнительный анализ. Теплоотдача и теплопередача. Интенсификация процессов теплообмена. Тепловой поток, плотность теплового потока. Температурное поле, температурный градиент.				
Основные законы и уравнения теории	3	4	0	8
теплопроводности.				
Теплопроводность, как механизм передачи теплоты в твердом теле. Закон Фурье. Коэффициент теплопроводности, его физический смысл. Дифференциальное уравнение теплопроводности. Коэффициент температуропроводности. Условия однозначности: геометрические, теплофизические, краевые. Тепловые граничные условия.				
Решение задач стационарной теплопроводности.	3	4	0	18
Теплопроводность плоской и цилиндрической стенки при граничных условиях первого и третьего рода. Термическое сопротивление контакта, методика оценки контактных сопротивлений. Теплопроводность при наличии внутренних тепловых источников.				
Решение задач нестационарной теплопроводности.	3	4	0	8
Теплопроводность при нестационарном режиме. Безразмерная формулировка краевой задачи теплопроводности. Критерии Био и Фурье, их физический смысл. Расчет времени нагрева и охлаждения тел. Метод регулярного теплового режима.				
Теплопередача через стенки.	4	7	0	12
Определение явления теплопередачи. Коэффициент теплопередачи. Теплопередача через плоскую и цилиндрическую стенки при стационарном режиме. Тепловая изоляция. Критический диаметр тепловой изоляции. Теплопередача через ребристые стенки. Коэффициент эффективности ребер. Теплопередача через стенки при нестационарном режиме.				
Численные методы решения задач.	3	6	0	11
Основы численных методов расчета температурных полей (метод конечных разностей).				

Наименование разделов дисциплины с кратким содержанием	занятий	ем аудито	в часах	Объем внеаудиторных занятий по видам в часах
	Л	ЛР	П3	CPC
Явная и неявная схемы аппроксимации. Устойчивость и сходимость численного решения. Ошибки дискретизации разностных схем. Прямые и итерационные методы решения сеточных уравнений. Применение метода сеток для стационарных и нестационарных задач теплопроводности и теплопередачи. Аппроксимация граничных условий. Принципы построения алгоритмов расчета.				
ИТОГО по 5-му семестру	18	25	0	63
6-й семес	тр			
Теплообмен излучением.	4	4	0	9
Физическая сущность лучистого теплообмена, виды потоков излучения и радиационные характеристики тел. Основные законы теплового излучения (Планка, Вина, Стефана-Больцмана, Кирхгофа). Лучистый теплообмен между телами, разделенными прозрачной средой. Лучистый теплообмен при наличии экрана. Защита от теплового излучения. Сложный теплообмен. Моделирование сложного теплообмена граничными условиями третьего рода.				
Конвективный теплообмен.	4	0	0	6
Уравнение Ньютона-Рихмана. Коэффициент теплоотдачи. Свободная и вынужденная конвекция. Ламинарный и турбулентный режим течения. Математическая постановка и пути решения краевой задачи конвективного теплообмена. Дифференциальные уравнения переноса тепловой энергии, сплошности, теплоотдачи в пограничном слое, движения (Навье-Стокса).				
Теплообменные аппараты.	4	4	0	7
Назначение, классификация и схемы теплообменных аппаратов. Конструктивные особенности теплообменников рекуперативного, регенеративного и смесительного типов. Основные принципы теплового расчета теплообменников. Прямой и проверочный расчеты рекуперативного теплообменника. Определение среднего температурного перепада и коэффициента теплопередачи, основные расчетные соотношения, определение температуры теплоносителя на выходе из теплообменника, расчет поверхности теплообмена.				
Основы массообмена.	2	0	0	2
Основы массообмена. Закон Фика. Формулы для потоков массы. Коэффициенты массопереноса. Тепломассообменные устройства.				
	1	1	l	

Наименование разделов дисциплины с кратким содержанием	Объем аудиторных занятий по видам в часах		Объем внеаудиторных занятий по видам в часах	
	Л	ЛР	ПЗ	CPC
Применение теории подобия для решения задач	4	8	0	12
конвективного теплообмена. Основы теории подобия. Определяемый и определяющие критерии подобия. Виды уравнений подобия конвективного теплообмена. Определяющая температура и определяющий размер. Методы осреднения температуры теплоносителей. Теоремы теории подобия, константы, индикаторы, числа подобия, их свойства, определяющие и определяемые числа подобия. Приложение теории подобия - теория физического эксперимента, моделирование, математический эксперимент. Критериальные уравнения теплоотдачи при свободном и вынужденном движении среды. Отдельные задачи конвективного теплообмена в однофазной среде. Теплоотдача при вынужденном движении жидкости в трубах и каналах. Теплоотдача при свободном движении теплоносителя. Внешнее обтекание тел простой формы. Конвективный теплообмен в замкнутом объеме.				
ИТОГО по 6-му семестру	18	16	0	36
ИТОГО по дисциплине	36	41	0	99

Тематика примерных лабораторных работ

№ п.п.	Наименование темы лабораторной работы
1	Определение коэффициента теплопроводности твердого тела методом трубы
2	Исследование теплопроводности тел простой формы при нестационарном режиме
3	Исследование теплоотдачи при свободном движении воздуха
4	Исследование теплового излучения твердого тела
5	Расчет теплообменных аппаратов

5. Организационно-педагогические условия

5.1. Образовательные технологии, используемые для формирования компетенций

Проведение лекционных занятий по дисциплине основывается на активном методе обучения, при котором учащиеся не пассивные слушатели, а активные участники занятия, отвечающие на вопросы преподавателя. Вопросы преподавателя нацелены на активизацию процессов усвоения материала, а также на развитие логического мышления. Преподаватель заранее намечает список вопросов, стимулирующих ассоциативное мышление и установление связей с ранее освоенным материалом.

Проведение лабораторных занятий основывается на интерактивном методе обучения, при котором обучающиеся взаимодействуют не только с преподавателем, но и друг с другом. При этом доминирует активность учащихся в процессе обучения. Место преподавателя в интерактивных занятиях сводится к направлению деятельности обучающихся на достижение целей занятия.

5.2. Методические указания для обучающихся по изучению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

6. Перечень учебно-методического и информационного обеспечения для самостоятельной работы обучающихся по дисциплине

6.1. Печатная учебно-методическая литература

№ п/п	Библиографическое описание (автор, заглавие, вид издания, место, издательство, год издания, количество страниц)	Количество экземпляров в библиотеке
	1. Основная литература	
1	Нащокин В. В. Техническая термодинамика и теплопередача: учебное пособие для вузов. 4-е изд., стер. Москва: Аз-book, 2008. 469 с.	286
2	Нащокин В. В. Техническая термодинамика и теплопередача: учебное пособие для вузов. 4-е изд., стер. Москва: Аз-book, 2009. 469 с.	171
3	Теплотехника: учебник для вузов / Луканин В.Н., Шатров М.Г., Камфер Г.М., Нечаев С.Г. 5-е изд., стер. М.: Высш. шк., 2005. 671 с.	4
4	Теплотехника: учебник для вузов / Луканин В.Н., Шатров М.Г., Камфер Г.М., Нечаев С.Г. 5-е изд., стер. М.: Высш. шк., 2006. 671 с.	3

5	Теплотехника: учебник для вузов / Луканин В.Н., Шатров М.Г., Камфер Г.М., Нечаев С.Г. 7-е изд., испр. М.: Высш. шк., 2009. 671 с.	19
	2. Дополнительная литература	
	2.1. Учебные и научные издания	
1	Мухачев Г. А., Щукин В. К. Термодинамика и теплопередача : учебник для вузов. 3-е изд., перераб. Москва : Высш. шк., 1991. 480 с.	247
	2.2. Периодические издания	
	Не используется	
	2.3. Нормативно-технические издания	
	Не используется	
	3. Методические указания для студентов по освоению дисципли	ны
	Не используется	
	4. Учебно-методическое обеспечение самостоятельной работы сту	дента
	Не используется	

6.2. Электронная учебно-методическая литература

Вид литературы	Наименование разработки	Ссылка на информационный ресурс	Доступность (сеть Интернет / локальная сеть; авторизованный / свободный доступ)
Дополнительная литература		http://elib.pstu.ru/vufind/Rec ord/RUPNRPUelib7044	локальная сеть; авторизованный доступ
Дополнительная литература	Перегудов В. В. Теплотехника и теплотехническое оборудование: учебник для техникумов / В. В. Перегудов Москва: Стройиздат, 1990.	http://elib.pstu.ru/Record/RU PNRPUelib2724	локальная сеть; авторизованный доступ
Дополнительная литература		http://elib.pstu.ru/Record/RU PNRPUelib7043	локальная сеть; авторизованный доступ
Основная литература		http://elib.pstu.ru/Record/RU PNRPUelib3549	сеть Интернет; свободный доступ

6.3. Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Вид ПО	Наименование ПО			
Операционные системы	MS Windows XP (подп. Azure Dev Tools for Teaching до 27.03.2022)			
Офисные приложения.	Microsoft Office Professional 2007. лиц. 42661567			
Системы управления проектами, исследованиями, разработкой, проектированием, моделированием и внедрением	ABINS.NET каф.СПМиТМ			

6.4. Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

Наименование	Ссылка на информационный ресурс
Научная библиотека Пермского национального исследовательского политехнического университета	http://lib.pstu.ru/
Электронно-библиотечеая система Лань	https://e.lanbook.com/
Электронно-библиотечная система IPRbooks	http://www.iprbookshop.ru/
Информационные ресурсы Сети КонсультантПлюс	http://www.consultant.ru/

7. Материально-техническое обеспечение образовательного процесса по дисциплине

Вид занятий	Наименование необходимого основного оборудования и технических средств обучения	Количество единиц	
Лабораторная работа	Лабораторное оборудование "Теплотехника"	11	
*	Проектор, ноутбук	1	

8. Фонд оценочных средств дисциплины

Описан в отдельном документе	
Simean Borgenbilom gokymente	

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Пермский национальный исследовательский политехнический университет»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения промежуточной аттестации обучающихся по дисциплине «ТЕПЛОПЕРЕДАЧА»

Приложение к рабочей программе дисциплины

Направление: 24.05.02 Проектирование авиационных и

ракетных двигателей

Направленность (профиль) 24.05.02.01 Проектирование авиационных **образовательной программы:** двигателей и энергетических установок

двигателей и энергетических установок

24.05.02.04 Проектирование ракетных

двигателей твердого топлива

Квалификация выпускника: «Специалист»

Выпускающие кафедры: «Авиационные двигатели» (АД)

«Ракетно-космическая техника и Энергетические системы» (РКТЭС)

Форма обучения: Очная

Курс: 3 Семестр: 5, 6

Трудоёмкость:

Кредитов по рабочему учебному плану: 6 3E Часов по рабочему учебному плану: 216 ч.

Форма промежуточной аттестации:

зачёт: 5 семестр экзамен: 6 семестр

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине «Теплопередача» является частью (приложением) к рабочей программе дисциплины (РПД). Фонд оценочных средств для проведения аттестации обучающихся ПО дисциплине промежуточной разработан соответствии с общей частью фонда оценочных средств для проведения промежуточной аттестации основной образовательной программы, которая устанавливает систему оценивания результатов промежуточной аттестации и критерии выставления оценок. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине устанавливает формы и процедуры текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине.

1. Перечень контролируемых результатов обучения, объекты оценивания и виды контроля

Согласно РПД освоение учебного материала дисциплины запланировано в течение двух семестров (5-го и 6-го семестров базового учебного плана) и разбито на 4 учебных модуля. В каждом модуле предусмотрены аудиторные лекционные и лабораторные занятия, а также самостоятельная работа студентов. В рамках освоения учебного материала дисциплины формируется компоненты компетенций знать, уметь, владеть, указанные в РПД, и которые выступают в качестве контролируемых результатов обучения по дисциплине «Теплопередача» (табл.1.1).

Контроль уровня усвоенных знаний, освоенных умений и приобретенных владений осуществляется в рамках текущего, рубежного и итогового контроля при изучении теоретического материала, сдаче отчетов по лабораторным работам, зачета (5 семестр) и экзамена (6 семестр). Виды контроля сведены в таблицу 1.1.

Таблица 1.1. Перечень контролируемых результатов обучения по дисциплине

Контролируемые результаты обучения по дисциплине (ЗУВы)		Вид контроля					
		Текущий		Рубежный		Итоговый	
		КР	ОЛР	Т/КР	Зачет	Экзамен	
Усвоенные знания							
3.1 знать: теорию, основные законы и методы в							
области естественнонаучных и общеинженерных	ОΠ	КР		T/KP	TB	TB	
дисциплин.							
3.2 знать: методы разработки физических и							
математических моделей исследуемых процессов,	ОΠ	КР		T/KP	TB	TB	
явлений и объектов профессиональной деятельности.							
Освоенные умения							
У.1 уметь: применять методы математического анализа							
и моделирования для решения инженерных задач			ОЛР			TB	
профессиональной деятельности.							
У.2 уметь: разрабатывать и использовать физические и							
математические модели исследуемых процессов,			ОЛР			TB	
явлений и объектов для решения инженерных задач.							
Приобретенные владения							
В.1 владеть: навыками теоретического и							
экспериментального исследования объектов			ОЛР				
профессиональной деятельности.							
В.2 владеть: навыками решения профессиональных	•						
задач в области авиационной и ракетно-космической			ОЛР				
техники современными методами.							
· · · · · · · · · · · · · · · · · · ·	_		·		·		

Примечание:

OП – опрос, для анализа усвоения материала предыдущей лекции; KP – контрольная работа по теме; OЛР – выполнение лабораторных работ с подготовкой и защитой отчёта (оценка умений и владений); T/KP – рубежное тестирование (контрольная работа); ТВ – теоретический вопрос.

Итоговой оценкой достижения результатов обучения по дисциплине является промежуточная аттестация в виде зачета (5 семестр) и экзамена (6 семестр), проводимая с учетом результатов текущего и рубежного контроля.

2. Виды контроля, типовые контрольные задания и шкалы оценивания результатов обучения

Текущий контроль успеваемости имеет целью обеспечение максимальной эффективности учебного процесса, управление процессом формирования заданных компетенций обучаемых, повышение мотивации к учебе и предусматривает оценивание хода освоения дисциплины. В соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования — программам бакалавриата, специалитета и магистратуры в ПНИПУ предусмотрены следующие виды и периодичность текущего контроля успеваемости обучающихся:

- входной контроль, проверка исходного уровня подготовленности обучаемого и его соответствия предъявляемым требованиям для изучения данной дисциплины;
- текущий контроль усвоения материала (уровня освоения компонента «знать» заданных компетенций) на каждом групповом занятии и контроль посещаемости лекционных занятий;
- промежуточный и рубежный контроль освоения обучаемыми отдельных компонентов «знать», «уметь» заданных компетенций путем компьютерного или бланочного тестирования, контрольных опросов, контрольных работ (индивидуальных домашних заданий), защиты отчетов по лабораторным работам, рефератов, эссе и т.д.

Рубежный контроль по дисциплине проводится на следующей неделе после прохождения модуля дисциплины, а промежуточный — во время каждого контрольного мероприятия внутри модулей дисциплины;

- межсессионная аттестация, единовременное подведение итогов текущей успеваемости не менее одного раза в семестр по всем дисциплинам для каждого направления подготовки (специальности), курса, группы;
 - контроль остаточных знаний.

2.1. Текущий контроль усвоения материала

Текущий контроль усвоения материала в форме собеседования или выборочного теоретического опроса студентов проводится по каждой теме. Результаты по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

2.2. Рубежный контроль

Рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений и приобретенных владений (табл. 1.1) проводится в форме защиты лабораторных работ, выполнения расчётных (практических) заданий и рубежных контрольных работ (после изучения каждого модуля учебной дисциплины).

2.2.1. Защита лабораторных работ

Всего запланировано 5 лабораторных работ. Типовые темы лабораторных работ приведены в РПД. Защита лабораторной работы проводится индивидуально каждым студентом. Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

2.2.2. Выполнение расчётных (практических) заданий

Расчётных (практических) заданий не запланировано.

2.2.3. Рубежная контрольная работа

Согласно РПД запланировано 4 рубежные контрольные работы (Т/КР) после освоения студентами учебных модулей дисциплины.

Типовые задания контрольных работ:

- контрольная работа 1: основные понятия и определения, закон Фурье и дифференциальное уравнение теплопроводности;
- контрольная работа 2: теплопередача через плоскую и цилиндрическую стенки;
- контрольная работа 3: уравнение Ньютона-Рихмана. Коэффициент теплоотдачи. Определение коэффициента теплоотдачи с использованием уравнений подобия.
- контрольная работа 4: прямой и проверочный расчеты рекуперативного теплообменного аппарата.

2.3. Промежуточная аттестация (итоговый контроль)

Допуск к промежуточной аттестации осуществляется по результатам текущего и рубежного контроля. Условиями допуска являются успешная сдача всех лабораторных работ и положительная интегральная оценка по результатам текущего и рубежного контроля.

Промежуточная аттестация проводится в форме зачета (5 семестр) и экзамена (6 семестр). Зачет по дисциплине проводится устно или письменно по билетам. Билет содержит один теоретический вопрос. Оценка выставляется с учётом результатов текущего и рубежного контроля.

Экзамен по дисциплине проводится устно или письменно по билетам. Билет содержит два теоретических вопроса для проверки усвоенных знаний и освоенных умений.

Билет формируется таким образом, чтобы в него попали вопросы и практические задания, контролирующие уровень сформированности *всех* заявленных компетенций. Форма билета представлена в общей части ФОС образовательной программы.

2.3.1. Типовые вопросы и задания для зачета по дисциплине

Типовые вопросы для контроля усвоенных знаний:

- 1. Механизмы передачи тепла: теплопроводность, конвективный теплообмен, теплообмен излучением.
- 2. Тепловой поток, плотность теплового потока, температурное поле, изотермическая поверхность и ее свойства, градиент температуры.
- 3. Теплопроводность. Основной закон теплопроводности. Коэффициент теплопроводности и его физический смысл.
- 4. Теплопроводность при стационарном режиме: однослойная и многослойная плоские стенки.
 - 5. Явление теплопередачи. Теплопередача через цилиндрическую стенку.

2.3.2. Типовые вопросы и задания для экзамена по дисциплине

Типовые вопросы для контроля усвоенных знаний:

- 1. Дифференциальное уравнение теплопроводности. Вид уравнения для частных случаев теплопроводности. Коэффициент температуропроводности.
- 2. Понятие о конвективном теплообмене. Явление теплоотдачи. Закон Ньютона-Рихмана, коэффициент теплоотдачи и его физический смысл.
- 3. Уравнения подобия. Общий вид уравнений подобия и определение постоянных коэффициентов. Определяющие температура и размер.
 - 4. Законы теплового излучения: Планка, Вина, Стефана-Больцмана.
- 5. Теплообменные аппараты. Классификация. Рекуперативные теплообменные аппараты. Схемы движения теплоносителей. Уравнения для расчета теплообменных аппаратов.

Типовые вопросы для контроля освоенных умений:

- 1. Температуры на поверхностях плоской стенки равны 15 °C и 25 °C. Толщина стенки 30 мм, площадь 6 кв.м, теплопроводность 20 Вт/(мК). Найти тепловой поток через стенку и термическое сопротивление стенки.
- 2. Температуры на поверхностях цилиндрической стенки (трубы) равны 15 °C и 25 °C. Толщина стенки 30 мм, теплопроводность 20 Вт/(мК). Найти погонный тепловой поток через стенку и термическое сопротивление стенки.
- 3. Через стенку трубы внутренним диаметром 50 мм, наружным 70 мм, теплопроводностью 10 вт/(мК) передается тепловой поток от теплоносителя, движущегося внутри трубы (температура 80 $^{\rm o}$ C, коэффициент теплоотдачи 150 Вт/(м $^{\rm 2}$ K)) к теплоносителю снаружи (температура 20 $^{\rm o}$ C, коэффициент теплоотдачи 50 Вт/(м $^{\rm 2}$ K)). Найти удельный тепловой поток через стенку.
- 4. Определить средний коэффициент теплоотдачи и тепловой поток при течении воды в трубе внутренним диаметров 8 мм и длиной 360 мм, если расход воды составляет 108 л/час, средняя температура воды $t_{\rm f}$ = 50 °C, температура стенки трубы $t_{\rm w}$ = 30 °C.
 - 5. Для измерения температуры горячего газа, движущегося по каналу,

установлена термопара, показание которой t_1 = 400 °C., степень черноты горячего спая термопары и стенок канала одинакова и равна ϵ_1 = ϵ_2 =0,78, а температура стенки канала при стационарном режиме t_2 = 300 °C. Коэффициент теплоотдачи на поверхности спая термопары равен α = 65 Bt/(м² K). Определить ошибку в показании термопары, которая возникает вследствие лучистого теплообмена между спаем и стенками канала, и истинную температуру газа.

Перечень типовых заданий для проверки умений и владений представлен в приложении 1. Полный перечень теоретических вопросов и практических заданий в форме утвержденного комплекта билетов хранится на выпускающей кафедре.

2.3.2. Шкалы оценивания результатов обучения на экзамене

Оценка результатов обучения по дисциплине в форме уровня сформированности компонентов *знать*, *уметь*, *владеть* заявленных компетенций проводится по 4-х балльной шкале оценивания путем выборочного контроля во время экзамена.

Типовые шкала и критерии оценки результатов обучения при сдаче экзамена для компонентов *знать*, *уметь и владеть* приведены в общей части ФОС образовательной программы.

Оценка «пять» ставится, если обучающийся правильно отвечает на все теоретические вопросы билета, и приводит верное и аргументированное решение практического задания (задачи).

Оценка «**четыре**» **ставится**, если обучающийся верно понимает суть вопросов билета, но допускает незначительные неточности при ответе на теоретические вопросы или при выполнении практического задания.

Оценка «три» ставится, если обучающийся ориентируется в сущности поставленных вопросов и заданий, но нуждается в наводящих вопросах, а также допускает ошибки в решении задачи.

Оценка «два» ставится, если обучающийся не ориентируется и не понимает поставленных заданий, не может ответить на теоретические вопросы билета, а также не справляется или допускает грубые ошибки в решении практического задания.

3. Критерии оценивания уровня сформированности компонентов и компетенций

3.1. Оценка уровня сформированности компонентов компетенций

При оценке уровня сформированности компетенций в рамках выборочного контроля при экзамене считается, что полученная оценка за компонент проверяемой в билете компетенции обобщается на соответствующий компонент всех компетенций, формируемых в рамках данной учебной дисциплины.

Типовые критерии и шкалы оценивания уровня сформированности компонентов дисциплинарных компетенций приведены в общей части ФОС образовательной программы.

3.2. Оценка уровня сформированности дисциплинарных компетенций

Общая оценка уровня сформированности всех компетенций проводится путем агрегирования оценок, полученных студентом за каждый компонент формируемых компетенций, с учетом результатов текущего и рубежного контроля в виде интегральной оценки по 4-х балльной шкале. Все результаты контроля заносятся в оценочный лист и заполняются преподавателем по итогам промежуточной аттестации.

Форма оценочного листа и требования к его заполнению приведены в общей части ФОС образовательной программы.

При формировании итоговой оценки промежуточной аттестации в виде экзамена используются типовые критерии, приведенные в общей части ФОС образовательной программы специалитета.

Приложение 1.

Типовые контрольные задания для оценки результатов обучения по дисциплине

Вопросы для контроля знаний:

- 1. Механизмы передачи тепла: теплопроводность, конвективный теплообмен, теплообмен излучением.
- 2. Тепловой поток, плотность теплового потока, температурное поле, изотермическая поверхность и ее свойства, градиент температуры.
- 3. Теплопроводность. Основной закон теплопроводности. Коэффициент теплопроводности и его физический смысл.
- 4. Дифференциальное уравнение теплопроводности. Вид уравнения для частных случаев теплопроводности. Коэффициент температуропроводности.
 - 5. Краевые условия для уравнения теплопроводности.
- 6. Понятие о конвективном теплообмене. Явление теплоотдачи. Закон Ньютона-Рихмана, коэффициент теплоотдачи и его физический смысл.
 - 7. Конвективный тепловой поток и способы его определения.
- 8. Тепловой и гидродинамический пограничные слои. Ламинарный и турбулентный режимы течения теплоносителей. Тепловое сопротивление пограничного слоя.
- 9. Дифференциальное уравнение теплоотдачи в пограничном слое. Зависимость коэффициента теплоотдачи от толщины и структуры пограничного слоя.
- 11. Основы теории подобия. Геометрическое, физическое и временное подобие. Условия подобия физических явлений.

- 12. Получение критериев подобия из дифференциальных уравнений конвективного теплообмена. Критерий Нуссельта.
- 13. Получение критериев подобия из дифференциальных уравнений конвективного теплообмена. Числа Фурье и Пекле.
- 14. Получение критериев подобия из дифференциальных уравнений конвективного теплообмена. Число Рейнольдса.
- 15. Уравнения подобия. Общий вид уравнений подобия и определение постоянных коэффициентов. Определяющие температура и размер.
- 16. Применение теории подобия для определения коэффициента теплоотдачи. Число Прандтля. Влияние направления теплового потока на величину коэффициента теплоотдачи.
- 17. Физическая сущность лучистого теплообмена, виды лучистых потоков и радиационные характеристики тел.
 - 18. Законы теплового излучения: Планка, Вина, Стефана-Больцмана.
 - 19. Эффективный и результирующий потоки излучения. Закон Кирхгофа.

Задания для контроля умений:

- 1. Теплопроводность при стационарном режиме: однослойная и многослойная плоские стенки.
- 2. Теплопроводность при стационарном режиме: однослойная и многослойная цилиндрические стенки.
 - 3. Явление теплопередачи. Теплопередача через плоскую стенку.
 - 4. Явление теплопередачи. Теплопередача через цилиндрическую стенку.
 - 5. Тепловая изоляция. Критический диаметр тепловой изоляции.
 - 6. Теплоотдача при течении жидкости в трубах и каналах.
- 7. Теплоотдача при свободной конвекции. Число Грасгофа. Внешнее обтекание горизонтальных и вертикальных труб. Теплопроводность газовых зазоров.
 - 8. Теплообмен излучением между телами. Приведенная степень черноты.
 - 9. Защита от излучения с помощью экранов.
- 10. Теплообменные аппараты. Классификация. Рекуперативные теплообменные аппараты. Схемы движения теплоносителей. Уравнения для расчета теплообменных аппаратов.
 - 11. Конструкторский расчет рекуперативного теплообменного аппарата.
- 12. Теплопроводность с внутренними источниками теплоты: плоская стенка с граничными условиями 1 рода.
- 13. Теплопроводность с внутренними источниками теплоты: сплошной цилиндр с граничными условиями 1 рода.